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A technique for topological analysis of the Ree-Hoover diagrams is developed with the aim to calculate the
Ree-Hoover weights up to the ninth order with moderate demands on computer storage and CPU time. The
ninth virial coefficients of hard spheres and disks are calculated, and the lower virial coefficients are accurately
recalculated. The calculations require several spanning diagrams; the most important spanning chains are
generated by reptation, other spanning diagrams by the standard Metropolis Monte Carlo algorithm. The tenth
and eleventh virial coefficients for hard spheres are estimated.
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I. INTRODUCTION

Virial coefficients, the coefficients in the density expan-
sion of the compressibility factor, are cornerstones of the
statistical thermodynamics of fluids at low and medium den-
sities. They are defined by exact formulassfree from any
approximationd in terms of integrals whose integrands de-
pend on intermolecular potential energyf1,2g. They can
serve for testing approximate theories of fluids and for de-
veloping equations of state.

In principle, the virial coefficients can be calculated for
any order. Unfortunately, calculation of high-order coeffi-
cients becomes increasingly difficult because both the num-
ber of integrals and their dimensionality rapidly increase.
The increase in complexity of the calculation is demon-
strated in Table I where the numbers of integrals and their
dimensionality for virial coefficients up to the ninth are sum-
marized.

The virial coefficients have been best explored for the
systems of hard spheres and two-dimensional hard disks for
which they are known up to the eighth. The second, third,
and fourth virial coefficients are known analytically. For hard
spheres it holds thatf3,4g

B̃2 = 4, B̃3 = 10,

B̃4 =
2707p + f438Î2 − 4131 arccoss1/3dg

70p
= 18.364 768 4,

and for hard disksf5,6g

B̃2 = 2, B̃3 =
16

3
−

4Î3

p
= 3.128 017 75,

B̃4 = 16 − 36
Î3

p
+

80

p2 = 4.257 854 46,

whereB̃i are the virial coefficients reduced by the molecule
“volume” V ssphere volume or disk aread,

B̃i = Bi/Vi−1.

These virial coefficients appear in the expansion of the com-
pressibility factor in powers of the packing fractionh
=NV /V, where N denotes the number of particles andV
system volume.

The higher virial coefficients must be calculated numeri-
cally. The fifth virial coefficients for hard spheres and disks
were calculated by Rosenbluth and Rosenbluthf7g and by
Kratky f8–11g, the sixths by Ree and Hooverf12g, the sev-
enths also by Ree and Hooverf13g, by Kim and Henderson
f14g, and by Janse van Rensburg and Torrief15g, and the
eighths by Janse van Rensburgf16g. As a rule, when the
higher virial coefficients were evaluated, the lower ones were
more accurately recalculated. Recently Vlasov, You, and
Mastersf17g recalculated the seventh and the eighth virial
coefficients.

The aim of this work is to determine the ninth virial co-
efficients of hard spheres and hard disks and to provide im-
proved values of the lower virial coefficients. We use the
algorithm originally developed in Refs.f12,13g sRee-Hoover
diagramsd and further extended in Refs.f16,17g. Within this
general algorithm, we propose a technique for topological
analysis of the diagrams and a technique for calculation of
the diagrams.

II. THEORY

A. Basic formulas

Thenth virial coefficient,Bn, of particles interacting via a
spherically symmetric pair potential,usr ijd, is given by the
sum of all cluster integrals corresponding to labeled irreduc-
ible f-bond diagrams withn points f18g,

Bn =
1 − n

n! o
R

IMsRd. s1d

We note that there are a number of synonymous expressions
for these diagrams in the literature, such as Mayer diagrams,
diagrams without articulation points, double connected dia-
grams, Mayer stars, cluster diagrams, blocks, etc. We will
use term “Mayer diagrams.”

The cluster integralIMsRd of Mayer diagramR is*URL: http://www.vscht.cz/fch/en/people/
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IMsRd =E ¯E p
ki,jlPR

fijdr2 ¯ drn, s2d

where the product is over all bonds in diagramR and the
Mayer functionf ij is given by

f ij = expf− busr ijdg − 1 =eij − 1. s3d

Here b=1/skBTd and eij is the Boltzmann factor. For hard
spheres and hard diskssgenerally for hard-body systemsd f ij
is either −1 if the particles overlap or 0 if they do not.

Many Mayer diagrams in Eq.s1d differ in the numbering
of the nodessparticlesd only. Thus Eq.s1d can be written in a
more compact form,

Bn =
1 − n

n! o
S

wMsSdIMsSd, s4d

where now the sum is over unlabeled Mayer diagrams and
wMsSd denotes the Mayer weight. Each unlabeled diagram
thus corresponds to the classsdiagram groupd of wMsSd la-
beled diagrams which are topologically equivalentsisomor-
phicd. For calculation purposes one labeled diagram from the
class is chosen as its canonical representation.

Ree and Hoover in their pioneering workf12g replaced
the irreducible Mayer diagrams by the generalized diagrams
with f bonds ande bonds,

p
ki,jlPS

f ij = p
ki,jlPS

f ij p
ki,jl¹S

1 = p
ki,jlPS

f ij p
ki,jl¹S

seij − f ijd. s5d

There are again a lot of synonyms used in the literature for
these diagrams: Ree-Hoover diagrams, modified stars, Ree-
Hoover complements, complement blocks, etc. We will use
the abbreviation “RH diagrams.”

By expanding the last product in Eq.s5d, one derives the
following formula for the RH weights:

wRHsSd = o
S8

s− 1duS8u−uSuwMsS8dhsS,S8d, s6d

where the sum is over all canonical representationS8, uSu
denotes the number off bonds in diagramS, andhsS,S8d is
the number of distinct labeled RH diagramsS having the

canonical representation of Mayer diagramS8 as a subdia-
gram. Finally,

Bn =
1 − n

n! o
S

wRHsSdIRHsSd, s7d

where

IRHsSd =E p
ki,jlPS

f ij p
ki,jl¹S

eijdr2 ¯ drn. s8d

The RH expansion leads to a considerable reduction of the
number of diagrams that must be evaluated, as many Mayer
diagrams cancel out identically, see Table I. In addition, the
computer code to implement Eq.s8d is much simpler and
more efficient than for Eq.s2d.

B. Calculation of the Mayer and Ree-Hoover weights

It is easy to determine the number of irreducible diagrams
and their Mayer weights fornø6 because this can be done
using “pencil and paper.” The highern is, the more difficult
it becomes to keep relevant information under control. For-
tunately, state-of-the-art algebra computing facilities allow
us to determine the numbers of relevant diagrams without a
“human factor” error.

The analysis is based onn-point diagrams with nodes la-
beled by numberss1,2,… ,nd. Any diagram S can be
uniquely characterized by binary code numberFsSd with nb

= s n
2

d binary digits. Each bit ofFsSd corresponds to some
bond f ij where digit 1 denotes a presence off ij bond and
digit 0 either its absencesfor Mayer diagramsd or the pres-
ence of aneij bond sfor RH diagramsd. The choice of num-
bering of the bonds appearing in diagrams is in principle
arbitrary. In this paper, the bits from the most significant,
2nb−1, to the least significant, 20, correspond to bonds
f12, f23, f34,… , fn1, f13,f24,… , fn2, f14,… . It means that

FsSd = − s2nb−1f12 + 2nb−2f23 + 2nb−3f34 + ¯ d. s9d

This choice differs from numbering used in all previous
papers. As shown later, it enables us to reduce considerably
both the computer time and memory requirements. More-
over, we define the canonical representation using this num-

TABLE I. Number of unlabeled and labeled Mayer and Ree-Hoover diagramsssee Sec. II B for expla-
nationd and dimensionalityd of corresponding cluster integrals for hard spheres.

Mayer Ree-Hoover

n unlabeled labeled unlabeled labeled d

2 1 1 1 1 1

3 1 1 1 1 3

4 3 10 2 4 6

5 10 238 5 68 9

6 56 11 368 23 3 053 12

7 468 1 014 888 171 297 171 15

8 7 123 166 537 616 2 606 56 671 216 18

9 194 066 50 680 432 112 81 564 21 286 987 064 21
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bering:The canonical representation of a class of isomorphic
labeled diagrams is the diagram S with the greatest value of
FsSd.

The algorithm starts by selecting the irreducible diagrams
and determining their Mayer weights. The following algo-
rithm is repeated for all diagrams starting from code number
2nb−1 scorresponding to diagram with allf ij bondsd.

sid Has the given diagram been analyzed? If so, continue
to the next diagram with the code number decreased by 1.

sii d Is the diagram connected and irreducible? If not, con-
tinue to the next diagram in the same manner.

siii d In this case, the chosen diagram is the canonical rep-
resentation of the next isomorphic class and its Mayer weight
is calculated. This is done as follows. We generate alln!
labelings of the diagram, i.e., all permutations of numbers
s1,2,… ,nd assigned to the nodes. For all of them, the code
numberFsSd is calculated and the number of different values
of FsSd gives the Mayer weight of the class. Simultaneously,
all these diagrams are marked as already analyzed. In this
way, it is assured that all diagrams are taken into account
once and only once.

The proposed algorithm avoids usage of the so-called nu-
meration invariantsscalled also graph determinantsd and dif-
ferent diagrammatic theorems which have been used in pre-
vious papersf12,13,16,17g as characteristics enabling us to
distinguish between different isomorphic classes. We also re-
mark that the numeration invariants defined inf13g are not
sufficient to distinguish between all classes for diagrams
with n.7.

There are no memory problems with this analysis for the
virial coefficients up toB8. However, there ares 9

2
d=36 pos-

sible bonds forB9 and 236 diagrams are to be analyzed. With
a single bit needed for each diagramsas a flag marking dia-
gram status in the algorithmd, this corresponds to 233 bytess8
GiB; 1 Gi=10243d of memory, which is more than is addres-
sable on 32-bit computers. The trick which allowed us to
proceed is based on the following statement:The canonical
representation of any n-point, nù5, Mayer diagram contains
path f12f23f34f45. The proof of this statement is given in the
Appendix.

Consequently, in the above algorithm it is sufficient to
consider only diagrams with the four most important bits of
FsSd set to 1. The number of diagrams to analyze thus re-
duces from 236 to 232 and the memory requirements to mod-
erate half a gigabyte. At the same time, the computer time of
the diagram analysis is considerably reduced.

Resulting CPU times for the analysis of Mayer diagrams
were about 2s, 4 min, and 11 h forn=7, 8, and 9, respec-
tively, on a PC with a Pentium 4/2.4 GHz processor. Inf16g,
30 min and 250 h were reported forn=7 and 8, respectively,
on an unspecified fast workstation. It implies that the usage
of our algorithm along with the progress in computer speed
enabled us to speed up the calculations by more than three
orders of magnitude.

The second part of the topological analysis is calculation
of the RH weights from the Mayer weights. For all classes of
diagrams, we start with the canonical representation chosen
in the previous analysis. Then we generate all its distinct
labelings in the same manner as previously and calculate

hsS,S8d. The RH weights are finally calculated from Eq.s6d.
The algorithm is further optimized by sorting the diagrams in
a given class and using the property that ifS8#S, then
FsS8døFsSd.

As noted earlier, the diagrammatic analysis becomes sub-
stantially complicated with increasingn and the number of
diagram classes rises very rapidly. To verify the results of the
analysis is therefore rather problematic. We nevertheless
compared our results with those of previous authors
f12,13,16,17g and we got complete agreement. The numbers
of the Mayer diagrams and RH diagrams also agree with
values from the literature where they were published forn
ø9 f19,20g. The condition which statesf13g

o
S

wRHsSd = 1

is another independent test which was also successfully veri-
fied.

C. Monte Carlo integration

The integrals in Eq.s8d are calculated by Monte Carlo
integration. To do this, a certain diagramsspanning diagramd
T formed as a subset off ij bonds ofS is selected. The span-
ning diagram must locate positions of all particles ofS and
simultaneously must be simple enough to enable analytical
evaluation ofIMsTd. The simplest example of such a span-
ning diagram can be the linear or nonlinear treef17g. We
note that it is not necessary to use only trees as the spanning
diagrams and in some cases it even can be more efficient to
use more complicated diagramsf21g.

Positions of particles for which the product off bonds in
T is nonzero, i.e., with overlaps of given bonds, are sampled
by the Monte Carlo method. We used two methods in depen-
dence on the spanning diagram. For the linear chain we used
reptation f22g. In one reptation step a particle is added at
random at the head of the chain so that it overlaps with the
head particle; this particle becomes the new head while the
tail particle is removed. For nonlinear trees we used the stan-
dard Metropolis Monte Carlo methodf5,22g. In one step,
each particle was subject to a trial move which was accepted
if all f bonds inT were preserved and rejected otherwise.
The size of the move was adjustedsfor each particle inde-
pendentlyd to an acceptance ratio of about 0.4. Technical
details about the used random number generator are given in
Appendix B of Ref.f21g.

The value ofIRHsSd is then calculated using the formula

IRHsSd = IMsTdK p
ki,jlPS\T

f ij p
ki,jl¹SøT

eijL
T

, s10d

where the brackets are mean values over all MC samples of
T. Generally, for an unlabeled diagramS there may exist
several isomorphic labeled RH diagramsUsS,Td sharing the
same labeled spanning diagramT. Therefore, the average
value
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ĪRHsSd =
1

gsS,Td o
UsS,Td

IRHsUd, s11d

can substantially improve the efficiency of the MC method.
The “unlabeling factor”gsS,Td counts the number of these
labelings.

For nø5, the simplest linear spanning diagram can be
used for all unlabeled RH diagrams. Fornù6, it is not pos-
sible sor usefuld to cover allSby one spanning diagram. The
spanning diagrams used are depicted in Fig. 1. In all cases
IMsTd=s−Vexcdn−1, where Vexc is the excluded volumesor
aread of the particle.

Using these sets of spanning diagrams, two different strat-
egies might be used to calculate values of all RH diagrams.

In strategy I, used already in previous papers

f12,13,15–17g, ĪRHsSd are calculated from Eqs.s10d ands11d
for all diagrams having the firstslineard spanning diagramT1
as a subset, i.e.,gsS,T1d.0. For other RH diagrams with
gsS,T1d=0, the second spanning diagramT2 is chosen and

ĪRHsSd for gsS,T2d.0 is calculated. This procedure is re-

peated until allĪRHsSd are obtained. The numbers of unla-

beled and labeled RH diagrams calculated in this way by
particular spanning diagrams are listed in Table II. We note
that the number of labeled RH diagrams forn=8 generated
by a linear spanning trees1 106 208 isomorphsd in f17g is
incorrect, the error being caused by an insufficient number of
rotational invariants in diagrammatic analysisf23g. These er-
rors affected only a small portion of diagrams with marginal
impact on the final results. The virial coefficient obtained
from strategy I is given by

Bn = o
T

DBnsTd, s12d

where the sum is over spanning trees depicted in Fig. 1 in the
order defined in this figure andDBnsTd is a contribution to
the virial coefficient due to spanning diagramT. The explicit
formula for each contribution is

DBnsTd=
. 1

MsTd o
i=1

MsTd
1 − n

n!
s− Vexcdn−1

3 o
S

s− 1duSu−uTuwRHsSd
gsS,Td o

j=1

gsS,Td

Hsi, jd, s13d

whereMsTd is a number of configurations of a given span-
ning diagram generated during MC sampling,oS is a sum
over all unlabeled RH diagrams contributing to the given
DBnsTd sas defined aboved, andHsi , jd is 1 if the ith gener-
ated configuration has the same bonds as thej th labeled dia-
gram and 0 otherwise.

In the actual computer code, all remainingsnot already in
Td f bonds are determined and then used to compose a binary
numberF similarly to Eq. s9d but now with thef bonds of
the spanning tree omitted because they are all 1. This number
is used as an index of a look-up-table containing indices of
all NsTd unlabeled diagrams spanned overT. A unity is then

FIG. 1. Spanning trees and their mnemonic names.

TABLE II. Numbers of unlabeled and labeled RH diagrams used in calculation for different spanning
diagrams.n is the number of nodessparticlesd, T is the type of spanning diagramssee Fig. 1d, DNsTd is the
number of RH diagrams generated by the given spanning diagram that have not been sampled by any
previous spanning diagram, andNsTd is the overall number of RH diagrams generated by a given spanning
diagram.

DNsTd NsTd
n T unlabeled labeled unlabeled labeled

5 Linear 5 16 5 16

6 Linear 22 318 22 318

6 Cross 1 1 16 175

7 Linear 168 13 506 168 13 506

7 Cross 3 16 146 9 715

8 Linear 2 576 1 099 116 2 576 1 099 116

8 Cross 29 453 2 517 885 899

8 Y-ended cross 1 1 2 466 831 866

9 Linear 81 302 173 778 502 81 302 173 778 502

9 Cross 255 15 594 80 812 150 339 039

9 Y-ended cross 6 23 77 709 143 458 475

9 Double cross 1 1 72 170 131 532 025
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added to the corresponing element of an array accumulating
thus the last sum of Eq.s13d. This efficient implementation is
based on thef ande bonds in RH diagrams and is not pos-
sible with the Mayer diagrams. ForB9, the size of the look-
up-tablesof 4-byte integersd is 1 GiB.

In strategy II,ĪRHsSd are calculated as weighted averages
from all spanning diagrams having theirgsS,Td.0,

ĪRHsSd = o
T

WsS,Td
gsS,Td o

UsS,Td
IRHsUd, s14d

where theoT is over all spanning diagramsT andWsS,Td is
the weightsof diagramS in the MC set of configurations for
Td. It is proportional to the product of the number of con-
figurations generated for givenT, MsTd, and the unlabeling
factor gsS,Td,

WsS,Td =
MsTdgsS,Td

o
T8

MsT8dgsS,T8d
. s15d

The virial coefficient obtained from this strategy is given
by

Bn = o
T

BnsTd, s16d

whereBnsTd is a part of the virial coefficient calculated by
spanning diagramT,

BnsTd=
. 1

MsTd o
i=1

MsTd
1 − n

n!
s− Vexcdn−1

3 o
S

WsS,Tds− 1duSu−uTuwRHsSd
gsS,Td o

j=1

gsS,Td

Hsi, jd. s17d

We remark in passing that both Eqs.s13d and s17d are in
the form of MC averages and therefore their errors can be
easily estimated even though the consecutive MC configura-
tions are correlated.

Both proposed strategies can be implemented simulta-
neously within the same Monte Carlo simulation. Generally
speaking, the second strategy is better than the first one. The
main reason is that Eq.s17d uses all available configurations

of the spanning diagrams to obtain average values ofĪRHsSd,
while Eq. s13d ignores the configurations belonging to the
diagrams covered by previous spanning trees. For instance,
for n=6 the linear spanning diagram generates only 22 RH
diagrams out of a total 23 needed. The missing one with
bonds f12, f23, f24, f25, f26, f34, f35, f36 is sampled by a cross
spanning diagram; this spanning tree generates 15 other dia-
grams.

On the other hand, the first strategy can be used to distin-
guish between the importance of the groups of diagrams
mapped by individual spanning diagrams. A more detailed
comparison of both strategies is given in the following sec-
tion.

III. RESULTS AND DISCUSSION

A. Virial coefficients up to B9

Virial coefficientsB5 to B9 for hard spheres and hard disks
were calculated using both strategies described in the previ-

TABLE III. Reduced virial coefficientsB̃n of hard spheres calculated by different spanning treesT.

DB̃nsTd and B̃nsTd denote the results of Eqs.s13d and s17d, respectively. The total number of MC configu-
rations for each spanning diagram is denoted byMsTd. Values in parentheses are estimated standard errors.

n T DB̃nsTd B̃nsTd 10−9MsTd

5 Linear 28.22438s31d 28.22438s31d 807

6 Linear 39.81591s111d 36.41260s104d 1318

6 Cross −0.0000063s4d 3.40318s26d 152

6 sum 39.81590s111d 39.81578s107d 1470

7 Linear 53.34130s162d 49.36955s158d 16463

7 Cross 0.000129s3d 3.97175s26d 819

7 sum 53.34143s162d 53.34130s160d 17282

8 Linear 68.5516s101d 65.4293s99d 13909

8 Cross −0.01174s12d 2.0011s14d 624

8 Y-ended cross 0 1.1096s5d 102

8 sum 68.5398s101d 68.5400s100d 14635

9 Linear 85.679s83d 111.173s76d 7611

9 Cross 0.129s1d 16.087s16d 870

9 Y-ended cross 0.00066s4d −35.175s13d 926

9 Double cross 0 −6.286s7d 399

9 sum 85.809s83d 85.799s79d 9806
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ous section. In Tables III and IV, we summarize the numbers
of configuration generated for each spanning diagram and
values ofDB̃sTd and B̃sTd contributing to virial coefficients
according to Eqs.s12d and s16d.

It is seen that substantially more configurations were gen-
erated on the basis of the linear spanning diagrams. There are
two reasons for this. First, the linear spanning diagrams were
generated by reptation while the nonlinear ones by a less
efficient standard Monte Carlo simulation. Second, the sets
of the RH diagrams covered by the linear spanning diagrams
are much more important as seen from their contributions to
Bn’s as well as their standard errors.

For hard disks, all spanning trees but the linear one give
zero contributions and can be omitted. For hard spheres, the
second non-negligible contributions are based on the cross
spanning diagrams but they have only a small influence on
the final results. Our preliminary calculations show that for
more dimensional systems, the other spanning diagrams have
greater importance: the diagrams spanned over cross trees
not sampled by linear trees contribute by about 30% to the
total value ofB9 for D=4. This behavior is mainly due to the
steric hindrances which occur in two and three dimensions
f12,13g but are much less important in higher dimensions.

Both strategies described in the previous section are com-
pared in Tables III and IV. Is is seen that the second strategy
gives only a minor decrease in standard errors. Is is mainly
due to a much smaller number of configurations generated
for all spanning diagrams but the linear one. The accuracy
gain by using all information available for hard sphereB6
sincluding the above-mentioned 15 diagramsd is marginal 4%
and similarly for higher virial coefficients. Total efficiency
analysis shows that the optimum numbers of configurations
to reach the smallest overall error with the same CPU time
would be even more for the linear spanning trees at the ex-

pense of cross trees and especiallyY-ended and double cross
trees.

An important by-product of these considerations is that
the final values do not depend, within statistical errors, on
the method even though the partial contributions to the virial
coefficients differ a lot. This demonstrates the consistency of
calculations using different spanning trees.

The calculations were performed on a PC-cluster based on
a dual Pentium 3 1 GHz processors and one 3 GHz hyper-
threading Pentium 4. The total CPU time per one virial
coefficient ssixth to ninthd was in the range 4–6 month
processors.

The recommended values ofBn for n=5 to n=9 for hard
spheres and hard disks together with their uncertainty esti-
mates and with the older literature results are shown in Table
V. It follows from the table that the lower virial coefficients,
nø8, calculated in this work are more precise by more than
one order than the older ones. In addition, in all cases the
new and literature values match within doubled combined
standard errorsi.e., at the 95% confidence leveld.

B. Higher-order virial coefficients

A question may be posed as to whether the tenth and
higher virial coefficients can be calculated using the tech-
nique proposed in this work and the state-of-the-art computer
facilities. Let us considern=10. There ares 10

2
d=45 possible

bonds forB10, and 245 diagrams are to be analyzed, which
can be reduced to 241 using the trick described in this work.
It can be easily addressed on 64-bit computers both for the
analysiss1 bit needed per diagramd and for the Monte Carlo
run swe used a 4-byte integer for one diagram; this number
can be, however, reduced by more sophisticated program-
mingd.

TABLE IV. Reduced virial coefficientsB̃n of hard disks calculated by different spanning treesT. The
notation is the same as in Table III.

n T DB̃nsTd B̃nsTd 10−9MsTd

5 Linear 5.3368943s69d 5.3368943s69d 12843

6 Linear 6.3630277s111d 6.1856656s108d 27465

6 Cross 0 0.1773607s17d 796

6 sum 6.3630277s111d 6.3630263s109d 28261

7 Linear 7.352083s28d 7.272598s28d 24532

7 Cross 0 0.079482s3d 258

7 sum 7.352083s28d 7.352080s28d 24790

8 Linear 8.318669s62d 8.216161s62d 32435

8 Cross 0 0.093210s5d 356

8 Y-ended cross 0 0.0092971s14d 33

8 sum 8.318669s62d 8.318668s62d 32824

9 Linear 9.27235s29d 9.12516s29d 11006

9 Cross 0 0.09931s2d 116

9 Y-ended cross 0 0.024431s8d 31

9 Double cross 0 0.023461s10d 26

9 sum 9.27235s29d 9.27236s29d 11179
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Besides computer memory, there is a computer time prob-
lem. Forn=9, the CPU time needed to perform topological
analysis is about a day. The estimated time forn=10 is a
year. In addition, the expected error inB10 estimated by ex-
trapolating the data of Table III is about ±1, provided that a
several-month processor of CPU time is available. To sum-
marize, calculation ofB10 for hard spheres and disks is at the
edge of current computer technology whileB11 is beyond.

Methods to obtain the values of higher virial coefficients
generally lie in their extrapolation from the known values of
the lower virial coefficients using computer simulation
equation-of-statesEOSd results. Using the present virial co-
efficients and the EOS molecular-dynamics data from Ref.

f21g, we estimateB̃10=106.5±0.5,B̃11=130±2. This is fully
consistent with the estimates based on the virial coefficients

up to B6 only and the same EOS data:B̃10=106±2, B̃11
=130±5 f21g. It is important to realize that these extrapola-
tions sand consequently error estimatesd are based on an im-
plicit assumption that the series of highersn.9d virial coef-
ficients behaves “regularly” as a function ofn, which need
not be the case.

For a hard-disk system, there are no sufficiently precise
simulation data of compressibility factors to perform similar
simultaneous correlation.

IV. CONCLUSIONS

A method of calculation of the virial coefficients consist-
ing in a safe determination of the Ree-Hoover weights and
effective evaluation of the cluster integrals has been pro-
posed. The method was applied to calculation of the ninth
virial coefficients of hard spheres and hard disks and accu-
rate recalculation of the lower virial coefficients using stan-
dard PC computers.

The method can be extended in several ways. It can be
used to evaluate the virial coefficients ofD-dimensional hard
hyperspheres,D.3, which are of some theoretical interest
f24g. It can also be used to calculate the ninth virial coeffi-
cients of hard-body fluidssspherocylinders, diatomics, ellip-

soids, etc.d Finally, it can be modified to calculate virial co-
efficients of hard-body mixtures.

Note added. Recently, a preprint appearedf25g reporting
the virial coefficients up toB10 of hard spheres in dimensions
2 to 8 and showing that the calculation ofB10 swhich we
considered “at the edge of current computer technology”d is
feasible.

The comparison with our results for disks and spheres up
to B9 shows an excellent agreement within combined error
bars. Our results are on average two to three times more
accurate with the exception ofB9 for hard spheres where the

accuracy is about the same. Also the exact valueB̃10
=105.8±0.4 off25g compares well with our EOS-based es-
timate 106.5±0.5. In addition, our four-dimensional results

obtained meanwhilefB̃5=146.2461s13d, B̃6=253.399s12d,
B̃7=375.09s13d, B̃8=608.1s16d, andB̃9=746s19dg also agree
with those of Ref.f25g.

Using these new virial data along with the hard-sphere

EOS data shifts the extrapolatedB̃11 to a bit lower value than

obtained in Sec. III B, 129±2, whileB̃12=155±10 is inaccu-
rate. It cannot be reliably determined by this method whether
some higher virial coefficients become negative or not.
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APPENDIX

In this appendix, we prove the following statement:The
canonical representation of any n-point, nù5, Mayer dia-
gram contains path f12f23f34f45.

Let us first considern=5. All unlabeled Mayer diagrams
are listed, e.g., inf8–11g and it is easy to number them so
that such a path is obtained.

TABLE V. Summary of virial coefficientsB̃n for hard spheres and hard disks.

n hard spheres hard disks

recommended literature recommended literature

5 28.22445s10da 28.22451s26dd 5.33689664s64dd

6 39.81550s36db 39.739s56de 6.363026s11dc 6.36256s32de

7 53.3413s16dc 53.44s9df 7.352080s28dc 7.35213s70df

8 68.540s10dc 68.2s3df 8.318668s62dc 8.3238s40df

9 85.80s8dc 9.27236s29dc

aWeighted average of 28.22451s26d by f8–11g and 28.224444s102d by f21g.
bWeighted average of 39.81546s38d by f21g and this work.
cThis work.
dReferencesf8–11g.
eReferencef16g.
fReferencef17g.
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Let us therefore assumen.5. We will build the required
path for the given unlabeled Mayer diagram. First, let us
choose a bond and call itf12. Because of double connectivity,
there exists a bonded nodesa neighbord connected to 2 and
different from 1; let us call it 3. In addition, there exists a
neighbor of 3 different from 2; if it differs from 1, we call it
4 and have a chain 1-2-3-4. If it does not, there must exist a
neighbor of either 1, 2, or 3 andsafter renumberingd we
arrive at chain 1-2-3-4 again.

Now we have at least two sparesunassignedd nodes to add
one node to chain 1-2-3-4. Two possibilities may happen:sid

There exists a bonded pair in the group of the spare nodes.
Since this bond must be connected, directly or indirectlysvia
another spare noded, to sany of four nodes ofd the chain 1-2-
3-4, we arrive at a chain of at least five nodessfour bondsd
which can be renumbered to 1-2-3-4-5.sii d No bonded pair
exists in the group of the spare nodes. If there is at least one
bond from node 1 or 4sof chain 1-2-3-4d to any of the spare
nodes, we have the fifth node for the chain. If there is no
such bond, then all the spare nodes must be connected to
nodes 2 and 3. Then chain 1-2-sspare noded-3-4 has the re-
quired properties.
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